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Abstract. Although the technique of versal unfolding is developed and ap-
plied effectively to nilpotent equilibria, there are still great difficulties in s-

tudying the cases of higher codimension, referred to degenerate Bogdanov-
Takens bifurcations, because those involved terms of higher degree produce
more equilibria and hetero-(homo-)clinic loops. In this paper we discuss versal

unfolding of a nilpotent Liénard equilibrium within the odd Liénard family.
Such a restricted versal unfolding preserves the practical sense but involves less
parameters. We prove that the nilpotent Liénard equilibrium is degenerate of
codimension 2 in the odd Liénard family. Thus we use two parameters to

display all possible bifurcations within the odd Liénard family such as pitch-
fork bifurcation, saddle-center bifurcation and homoclinic (heteroclinic) loop
bifurcation.

1. Introduction

One of the most important mechanical systems is the well-known Liénard equa-
tion ([11, 15, 19])

ẍ+ f(x)ẋ+ g(x) = 0,(1.1)

where g presents the restoring force and f denotes the friction coefficient such that
f , g are continuous functions and g(0) = 0.

It is a significant task to discuss versal unfolding of a degenerate nilpotent
Liénard equilibrium O restricted within the Liénard family. Such a restricted versal
unfolding preserves the practical sense but involves less parameters ([27, 28]). The
classical Liénard mechanism (see e.g. [16, 19] or [29, Chapter 4, p.220]) requires in
system (1.1) the function f to be even and the function g to be odd, which forces
b2 = 0 and confines system (1.1) to the form

dx
dt = y,
dy
dt = −(a2x

2 +O(x4))y − (b3x
3 +O(x5)),

(1.2)

called the even Liénard form simply. Another type of Liénard systems, where both
f and g are odd in (1.1), was considered in [21]. Such systems are of the form

dx
dt = y := P0(x, y),
dy
dt = −f0(x)y − g0(x) := Q0(x, y),

(1.3)
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called the odd Liénard form correspondingly, where

f0(x) = a1x+ a3x
3 +O(x5),

g0(x) = b1x+ b3x
3 +O(x5)

with real constant ai s and bj s. Corresponding to the above opposite case, the
degeneracy of the nilpotent equilibrium O requires that a1 = b1 = 0 but (a3, b3) ̸=
(0, 0) in R2 and therefore system (1.3) with a nilpotent equilibrium at O is of the
form

dx
dt = y,
dy
dt = −b3x

3 − a3x
3y +O(|(x, y)|5).(1.4)

System (1.4) also has a double vanished eigenvalues and, unlike the classical Bogdanov-
Takens bifurcation case, the origin O is not a cusp but either a saddle, center or
focus by [4, Chapter 3, Theorem 3.5] or [29, Chapter 2, Theorem 7.2- 7.3]. More
concretely, O is a (nilpotent) saddle if b3 < 0, or either a nilpotent center or a nilpo-
tent focus if b3 > 0 since a3b3 ̸= 0. Therefore, it is also interesting to discuss the
restricted versal unfolding of the nilpotent equilibrium O within the odd Liénard
family (1.3) and the unfolding may exhibit bifurcations different from bifurcations
of (1.2).

In this paper we investigate versal unfolding of the nilpotent Liénard equilibrium
of system (1.4) within the odd Liénard family (1.3). This restricted versal unfolding
cannot be deduced from any result of [5] because in [5] neither the degenerate
system (when unfolding parameters equal zeros) nor the unfolding system near
the nilpotent equilibrium is of the odd Liénard form. Moreover, the restricted
versal unfolding also cannot be obtained with the well-known Bogdanov-Takens
normal form because of the odevity in f0 and g0. In contrast to that the nilpotent
equilibrium O was specified to be a saddle or focus, we have to work in the case
that the nilpotent equilibrium is a nilpotent saddle, a nilpotent focus or a nilpotent
center. Besides, the lowest degree of system (1.4) is 3, which is higher than that of
the even Lienard system (1.2) and makes difficulties in discussion. We will prove
that the nilpotent Liénard equilibrium of system (1.4) is degenerate of codimension
2 in the odd Liénard family. Thus we can introduce two parameters to unfold the
equilibrium versally within the odd Liénard family, displaying pitchfork bifurcation,
saddle-center bifurcation and homoclinic (heteroclinic) loop bifurcation.

2. Versal Unfoldings

Let Lo consist of all planar C4 odd Liénard vector fields of form (1.3), which is
a linear space and well defined in a compact neighborhood of the equilibrium O.
Moreover, Lo can be regarded as a topological space with the topology induced
from the maximum norm.

In order to give a versal unfolding of system (1.4) in Lo, it suffices to consider
its fourth order truncation of the form

dx
dt = y,
dy
dt = −b3x

3 − a3x
3y

(2.1)
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near the origin, which is regarded as the principal system as in [1]. As known in [3],
system (2.1) is degenerate of codimension greater than 2 at O. However, restricted
within Lo the codimension of system (1.4) may be less. In Lo, system (2.1) has a
natural unfolding

dx
dt = y := P (x, y),
dy
dt = µ1x+ µ2xy + bx3 + ax3y := Q(x, y)

(2.2)

by keeping the structure of systems in Lo, where µ = (µ1, µ2) denotes the tuple of
the unfolding parameters near (0, 0) and we write −b3,−a3 as b, a respectively for
simpler notations. Notice that the unfolding system (2.2) has no constant terms
since the origin is assumed always an equilibrium and ab ̸= 0. Neither the term
x2 nor the term y2 exists in the unfolding system (2.2) because of the odevity of
functions f and g in system (1.1).

Before proving the versality of the unfolding system (2.2), we need to know the
codimension of the degeneracy in the odd Liénard family Lo. Let V0 denote the
degenerate system (2.1) and Lo(x) be the space of germs at the point x = (x1, x2) ∈
R2 of vector fields in the family Lo. Fixed a neighborhood U0 of the origin in R2,
let

V := ∪ξ∈U0Lo(ξ),

which is a topological space defined as for the space of vector fields on a manifold.
Each Lo(ξ) in V corresponds to a point ξ ∈ R2 and vector fields at the point. A
germ Vξ ∈ V at ξ ∈ U0 defines a vector field of a planar odd Liénard system

dx

dt
= V (x), x ∈ Uξ,(2.3)

where Uξ ⊂ U0 is a neighborhood of ξ.

In order to give a versal unfolding for V0 in V, we need to describe the class of
germs having the same singularity as V0. This class is

S := {Vξ ∈ V| Vξ satisfies (H1), (H1) and (H3)},

where

(H1): the linearization of Vξ(x) at x = ξ is

[
0 1
0 0

]
;

(H2): the coefficients of the terms of degree 2 in the expansion (1.4) of Vξ(x)
always vanish;

(H3): only two coefficients of the 3-order and 4-order terms x3 and x3y in the
expansion (1.4) of Vξ(x) are not equal to 0, i.e., b3a3 ̸= 0.

The conditions (H2) and (H3) guarantee that Vξ(x) belongs to the family Lo and
has some degeneracy. Without (H3), additional degeneracy will be caused. The
following lemma shows that (H3) is the condition of nondegeneracy for an unfolding
of codimension 2.

Lemma 1. The set S is a smooth submanifold of codimension 2 near V0 in V.
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Proof. For a given k ∈ Z+, let jkVξ denote the k-jet of Vξ at ξ, i.e., the vector of
all the coefficients in the k-th order Taylor expansion. Let Jk = {jkVξ| Vξ ∈ V}. A
natural projection πk : V → Jk can be defined by

Vξ 7→ (V (ξ), DV (ξ), · · · , DkV (ξ)),

where V is defined in (2.3) and DkV (ξ) is the k-th order derivative of V at x = ξ.

First of all, we prove that π1(S) constructs a smooth submanifold of codimension
2 near π1(V0) in J1. Note that the origin is an equilibrium for all considered systems.
By the definition of S, we have

π1(S) =

{
(0, DV (ξ))| ∂V1(ξ)

∂x1
≡ 0,

∂V1(ξ)

∂x2
≡ 1,(2.4)

∂V2(ξ)

∂x1
=

∂V2(ξ)

∂x2
= 0

}
,

where V1 and V2 are components of V . The structure of the submanifold for π1(S)
is observed from the projection π1 to a finite-dimensional Euclidean space. The
last two equalities in (2.4) confine the submanifold π1(S) to be of codimension 2
near π1(V0) in J1.

Next, we claim that for each k ≥ 2 the set πk(S) is also a smooth submanifold
of codimension 2 near πk(V0) in Jk. The structure of the submanifold for πk(S) is
observed similarly to the last step. Define a projection πk1 : Jk → J1 such that

(V (ξ), DV (ξ), · · · , DkV (ξ)) 7→ (V (ξ), DV (ξ)),

which is clearly a regular submersion. Hence, the map πk1 intersects π1(S) ⊂ J1

transversally. By Theorem 3.3 in [12, p. 22], π−1
k1 (π1(S)) is a smooth submanifold

in Jk and the codimension of π−1
k1 (π1(S)) in Jk is the same as the codimension of

π1(S) in J1, i.e.,

codimπ−1
k1 (π1(S)) = codimπ1(S) = 2.(2.5)

On the other hand, πk(S) ⊂ π−1
k1 (π1(S)). Actually, πk(S) consists of those in

π−1
k1 (π1(S)) with restriction (H3). Furthermore, πk(S) is an open subset of π−1

k1 (π1(S))

near πk(V0) because of the strict inequalities (H3). It follows from (2.5) that in Jk,

codimπk(S) = 2.(2.6)

Since πk is a smooth submersion from V to Jk, we know that πk intersects
πk(S) ⊂ Jk transversally. As above, Theorem 3.3 in [12] also implies that S =
π−1
k (πk(S)) is a smooth manifold in V and

codimS = codimπ−1
k (πk(S)) = codimπk(S) = 2

by (2.6). It means that S is a smooth submanifold of codimension 2 in V. �

By Lemma 1, a universal unfolding of (2.1) in the family Lo is a system with two
unfolding parameters and the parameterized system is a submanifold of dimension
2 intersecting S transversally.
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Theorem 2. System (2.2) with condition (H3) is a versal unfolding of system (1.4)
in Lo.

Proof. Let V (µ) := (P1(x, y, µ), Q1(x, y, µ)), where P1 and Q1 denote the right-
hand sides of the first equation and the second equation of (2.2) respectively. Clear-
ly, V (0) = V0 ∈ S. In order to prove the transversality of V (µ), define the map
φ : R2 → J3 by

µ 7→ π3(V (µ)) = (V (µ), DV (µ), D2V (µ), D3V (µ)).

It suffices to prove that φ intersects π3(S) ⊂ J3 transversally at π3(V0). Consider
an open neighborhood U of µ = 0. By condition (H1), the Jacobian matrix DV (µ)
is nilpotent at the intersection φ(U) ∩ π3(S), i.e.,{

∂
∂xQ1(x, y, µ1, µ2) = µ1 + µ2y + 3bx2 + 3ax2y = 0,

∂
∂yQ1(x, y, µ1, µ2) = µ2x+ ax3 = 0.

(2.7)

Furthermore, the Jacobian matrix of φ at µ = 0 contains a sub-matrix[
∂

∂µ1
(∂Q1

∂x ) ∂
∂µ2

(∂Q1

∂x )
∂

∂µ1
(∂Q1

∂y ) ∂
∂µ2

(∂Q1

∂y )

]
µ=0

=

[
1 y
0 x

]
,

which has rank 2 when x ̸= 0. Therefore, the Jacobian matrix of φ is of full rank
when x ̸= 0, implying the transversality of φ. Moreover, when x = 0 any unfolding
of system (1.4) in the class Lo must have the form ẋ = y, ẏ = 0 because of the
odevity in f0 and g0. And system (2.2) also has the form ẋ = y, ẏ = 0 if x = 0,
implying the versality of system (2.2) at this case.

In order to give a versal unfolding of system (1.4), it suffices to consider its
truncation of degree four. We would see that system (2.2) is a general unfolding of
truncated (1.4) by preserving the structure of the family Lo. Then system (2.2) is
a versal unfolding of system (1.4). �

Remark that system (2.2), being an unfolding of system (1.4), is not only versal
but also universal because it contains the least number of unfolding parameters.

3. Bifurcations

In this section we investigate the universal unfolding (2.2) for all local bifurca-
tions in a neighborhood of the degenerate system (2.1) at equilibrium O : (0, 0).

Theorem 3. There exist at most three equilibria of system (2.2). The origin O :
(0, 0) is always an equilibrium of (2.2). When the unfolding parameter (µ1, µ2)
varies apart from (0, 0) and through the curve

C1 := {(µ1, µ2)| µ1 = 0},

two equilibria A± : (±
√

−µ1/b, 0) of system (2.2) arise from a pitchfork bifurcation
and O remains an equilibrium if µ1b < 0. Moreover, equilibrium O of system (2.2)
is a saddle if either µ1 > 0 or µ1 = 0 and b > 0, but a center in other cases.
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Equilibria A± : (±
√

−µ1/b, 0) are either saddles if µ1 < 0 and b > 0, or sinks
(stable foci or stable nodes) if µ1 > 0, b < 0 and µ2 − aµ1/b < 0, or sources
(unstable foci or unstable nodes) if µ1 > 0, b < 0 and µ2 − aµ1/b > 0, or centers if
µ1 > 0, b < 0 and µ2 − aµ1/b = 0.

Proof. It is not difficult to find that all equilibria lie on the x-axis from the first
equation of system (2.2). Notice that the origin O : (0, 0) always is an equilibrium.

Direct calculation shows that equilibria A± : (±
√

−µ1/b, 0) of system (2.2)
appear from O when µ1b < 0. When µ1b ≥ 0, system (2.2) has a unique equilibrium,
which is the origin O : (0, 0). The number of equilibria from one becomes three when
unfolding parameter (µ1, µ2) passes through C1 and then a pitchfork bifurcation
happens.

At O : (0, 0), we can compute that the matrix of linear part of system (2.2) has
eigenvalues ±√

µ1. Hence, if µ1 > 0, the eigenvalues are two reals with opposite
signs, indicating that equilibrium O is a saddle. In the case µ1 < 0, the eigenvalues
become a pair of conjugate pure imaginary numbers, implying that O is of center-
focus type. Note that in system (2.2)

P (−x, y) = P (x, y), Q(−x, y) = −Q(x, y),(3.1)

showing the symmetry of vector field (2.2) with respect to the y-axis if we do not
consider the direction of vector field. Thus we get from [29, Chapter II.5] that O
is a center if µ1 < 0.

In the case µ1 = 0, equilibrium O is a nilpotent degenerate singularity. We first
consider the situation µ2 ̸= 0. Thus we can use Theorem 3.5 of [4, Chapter III] or
Theorem 7.2 of [29, Chapter II], which were given by desingularizing the degenerate
equilibrium as shown in Section 7.2 of [9], to obtain that O of system (2.2) is either
a saddle if µ2 ̸= 0 and b > 0, or a center if µ2 ̸= 0 and b < 0 since (2.2) is symmetric
with respect to the y-axis and µ2

2 + 8b < 0. When µ1 = µ2 = 0, applying Theorem
3.5 of [4] or Theorem 7.2 of [29] again, we get that equilibrium O is a saddle if b > 0
and a center if b < 0 because of the symmetry of system (2.2).

When µ1b < 0, two equilibria A± : (±
√
−µ1/b, 0) of system (2.2) appear. We

only need to research the qualitative properties of equilibrium A+ because system
(2.2) is symmetric and then equilibrium A− has the same properties as A+ after
an opposite time rescaling. Moving equilibrium A+ to the origin, we consider the
trace T+ and determinant D+ of the matrix of system (2.2) at A+. We calculate
that

T+ =

√
−µ1

b
(µ2 −

aµ1

b
), D+ = 2µ1.(3.2)

Therefore, if µ1 < 0, the eigenvalues are two reals with opposite signs and A+ is a
saddle. When µ1 > 0 and µ2 − aµ1

b > 0 (resp. < 0), equilibrium A+ is an unstable
(resp. stable) focus or node.
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When b < 0, µ1 > 0 and µ2− aµ1

b = 0, after a linear tranformation x̃ = x√
µ1
, ỹ =

y√
2µ1

and a time rescaling dt = dt̃√
2µ1

, system (2.2) becomes

ẋ = y,

ẏ = −x− 3
√
−b
2 x2 + b

2x
3 + y

(
−

√
2aµ1

b x+ 3aµ1√
−2b

x2 + aµ1√
2
x3

)
at A+, where we still use x amd y to represent x̃ and ỹ for simplicity. Notice that
the eigenvalues become a pair of conjugate pure imaginary numbers at A+, implying
that A+ is of center-focus type. Applying Theorem 1 (b) of [8], equilibrium A+ of
system (2.2) is a center in this case. The proof is completed. �

Theorem 4. When µ1 < 0 and b > 0 there exists a heteroclinic loop which connects
with the saddles A± and surrounds the center O. When µ1 > 0, b < 0 and µ2 −
aµ1/b = 0, there exist two homooclinic loops linking the saddle O and surrounding
centers A± respectively.

Proof. In the case µ1 < 0 and b > 0, equilibria A± are saddles and O is a center by
Theorem 3. Note that the Jacobian matrix of system (2.2) at A+ has eigenvalues

(T+±
√
T 2
+ − 4D+)/2 corresponding to the eigenvectors (2/(T+±

√
T 2
+ − 4D+), 1)

T ,

where T+ +
√
T 2
+ − 4D+ > 0, T+ −

√
T 2
+ − 4D+ < 0 and T+, D+ are exhibited in

(3.2). Moreover, noticing directions of vector field we obtain that ẋ = y > 0 if
y > 0 and ẋ < 0 if y < 0. Therefore, the unstable (or stable) manifold of saddle
A+ will go to the y-axis and intersect the negative (or positive) y-axis at a point
B+

1 (or B+
2 ) as the time t increases (or decreases). Appying the symmetry of vector

field (2.2) with respect to the y-axis, the stable (or unstable) manifold of saddle
A− also intersects the negative (or positive) y-axis at the point B+

1 (or B+
2 ) as the

time t decreases (or increases). The uniqueness of solutions indicates the existence
of a heteroclinic loop which connects with the saddles A± and surrounds the center
O, as shown in Figure 3.

In the case µ1 > 0, b < 0 and µ2 − aµ1/b = 0, equilibria A± become centers
and O becomes a saddle from Theorem 3. Thus, there exist two homooclinic loops
linking the saddle O and surrounding two centers A± respectively, which are the
boundaries of the center fields of centers A±, as shown in Figure 6. �

Remark that the heteroclinic loop linking two saddles A± disappears and three
equilibria A± and O coalesce at the origin, when µ1 varies from negative to zero.
Then a bifurcation of heteroclinic loop happens with the pitchfork bifurcation.
When µ1 > 0, b < 0 and µ2 − aµ1/b ̸= 0, equilibria A± become stable or unstable,
and the two homoclinic loops linking the saddle O split and a new bigger homoclinic
loop linking the saddle O appears by the symmetry of vector field (2.2), as shown
in Figures 4-5. Hence a bifurcation of homoclinic loop happens. When µ1 varies
from positive to zero, the two homoclinic loops linking the saddle O disappear and
three equilibria A± and O coalesce at the origin. Then a bifurcation of homoclinic
loop also happens together with the pitchfork bifurcation.
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4. Simulations and Remarks

We will illustrate our results by numerical simulations in the following figures.
As (µ1, µ2) = (0, 0), system (2.2) has a unique equilibrium O by Theorem 3, which
is a saddle if either µ1 > 0 or µ1 = 0 and b > 0 shown in Figure 1, and is a center
in other cases shown in Figure 2, where the red points represent equilibria.

x ’ = y                          
y ’ = x3 y + 1 x3 + 0 x y − 0 x
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Figure 1. Equilibrium O is a saddle as µ1 > 0 or µ1 = 0 and b > 0.
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Figure 2. Equilibrium O is a center as µ1 < 0 or µ1 = 0 and b < 0.

As µ = (µ1, µ2) varies from C1 (the bifurcation curve given in Theorem 3) into
the region {µ ∈ R|µ1 > 0} (or {µ ∈ R|µ1 < 0}), equilibrium O changes from a
degenerate saddle or center to a simple saddle or a simple center. At the same
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time, two equilibrium A± emerge, which can be saddles if µ1 < 0 and b > 0 shown
in Figure 3, or foci (or nodes) if µ1 > 0, b < 0 and µ2 + aµ1/b ̸= 0 shown in Figure
4 and Figure 5, or centers if µ1 > 0, b < 0 and µ2 − aµ1/b = 0 shown in Figure 6.
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Figure 3. Equilibrium O is a center while A± are saddle as µ1 < 0
and b > 0.
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Figure 4. Equilibrium O is a saddle while A+ is a stable focus
or node and A− is an unstable focus or node if µ1 > 0, b < 0 and
µ2 − aµ1/b < 0.
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Figure 5. Equilibrium O is a saddle while A+ is an unstable
focus or node and A− is a stable focus or node if µ1 > 0, b < 0
and µ2 − aµ1/b > 0.
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